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ABSTRACT

We present non-Gaussianity testing on derived maps from the recently released first-yearWilkinson Microwave
Anisotropy Probe data by Tegmark, de Oliveria-Costa, & Hamilton. Our test is based on a phase-mapping technique
that has the advantage of testing non-Gaussianity at separate multipole bands. We show that their foreground-
cleaned map is against the random-phase hypothesis at all four multipole bands centered around , 290,� p 150
400, and 500. Their Wiener-filtered map, on the other hand, is Gaussian for and marginally Gaussian� ! 250
for . However, we see the evidence of non-Gaussianity for as we detect certain degrees224! � ! 350 � 1 350
of phase coupling, hence against the random-phase hypothesis. Our phase-mapping technique is particularly useful
for testing the accuracy of component separation methods.

Subject headings: cosmic microwave background — cosmology: observations — methods: data analysis

1. INTRODUCTION

With the first-year data release of theWilkinson Microwave
Anisotropy Probe (WMAP; Bennett et al. 2003a, 2003b), it has
been proclaimed that we have entered the era of “precision cos-
mology.” The temperature fluctuations of the cosmic microwave
background (CMB) radiation are believed to be the imprint of
primordial density fluctuations in the early universe, which give
rise to the large-scale structures that we see today. Hence the
data enable us to test the statistical character of the primordial
fluctuations, making subsequent inferences on the topology and
content of the universe.

Although theWMAP team (Komatsu et al. 2003) claims that
the signal is Gaussian with 95% confidence level (CL), the in-
ternal linear combination map released by theWMAP team is
not up for CMB studies because of “complex noise properties.”5

Another group led by M. Tegmark has performed an independent
foreground cleaning from the first-yearWMAP data and made
public their whole-sky CMB maps. Their foreground-cleaned
map (FCM) and the Wiener-filtered map (WFM) are available
on-line.6

The FCM by the authors’ definition is such that the fore-
ground contamination is removed as much as possible. As fore-
grounds are rather non-Gaussian, any residual after cleaning
would manifest itself in the phase configuration. In this Letter,
we display the phases of the FCM and the WFM with color
coding and implement our phase-mapping technique to test
quantitatively the Gaussianity of both maps, based on the
random-phase hypothesis of homogeneous and isotropic Gaus-
sian random fields. Our phase-mapping technique can play a
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crucial role as a qualitative criterion for component separation
similar to the field of image reconstruction.

2. GAUSSIAN RANDOM FIELDS AND THE RANDOM-PHASE
HYPOTHESIS

The statistical characterization of temperature fluctuation of
CMB radiation on a sphere can be expressed as a sum over
spherical harmonics:

� �

DT(v, J) p a Y (v, J), (1)� � �m �m
�p0 mp��

where . Homogeneous and isotropica p Fa F exp (if )�m �m �m

Gaussian random fields (GRFs), as a result of the simplest
inflation paradigm, possess Fourier modes whose real and
imaginary parts are independently distributed. In other words,
they have phases that are independently distributed andf�m

uniformly random on the interval (Bardeen et al. 1986;[0, 2p]
Bond & Efstathiou 1987). Thus the spatial variations should
constitute a statistically homogeneous and isotropic GRF (Bar-
deen et al. 1986) whose statistical properties are completely
specified by its angular power spectrumC�,

∗Aa a S p C d d . (2)′ ′ ′ ′�m � m � �� mm

The strict definition of a homogeneous and isotropic GRF
requires that the amplitudes are Rayleigh distributed and the
phases are random (Watts & Coles 2003). At the same time,
the central limit theorem guarantees that a superposition of a
large number of Fourier modes with random phases will be
Gaussian. Therefore, the random-phase hypothesis on its own
serves as a definition of Gaussianity (Bardeen et al. 1986).

3. COLOR-CODED PHASE MAP OF THE DERIVEDWMAP MAPS

Tegmark, de Oliveira-Costa, & Hamilton (2003, hereafter
TDH03) perform an independent foreground analysis from the
WMAP data and provide a FCM and WFM. We first use a visual
display of phases by colors to show phase associations (Coles
& Chiang 2000). In color image display devices, each pixel
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Fig. 1.—Color-coded phase gradientD� for the FCM (top left triangle) and
the WFM (bottom right). The vertical axis is the� up to and the� p 600
horizontal them axis. Because of the relation , we show only∗a p a�, m �, �m

modes from nonnegativem. Although the phase gradient (from neighboring
modes) is the most primitive, the stripes shown from the FCM indicate strong
phase correlation between modes of neighboring� of the samem.

Fig. 2.—Example of a return map for of phases(Dm, D�) p (0, 4) f�, m

of the FCM where . The of this return map is 0.0332 when241 ! � ! 250 x
it is discretized into 1282 pixels with smoothing scale .R p 2

represents the intensity and color at that position in the image.
Two color schemes are usually used for the quantitative speci-
fication of color, namely, the red-green-blue and hue-saturation-
brightness (HSB) color schemes. Hue is the term used to dis-
tinguish between different basic colors (blue, yellow, red, and
so on). Saturation refers to the purity of the color, defined by
how much white is mixed with it. Brightness indicates the overall
intensity of the pixel on a gray scale. The HSB color model is
particularly useful because of the properties of the “hue” param-
eter, which is defined as a circular variable. Therefore we are
mapping phases from 0 to 2p to the hue circle.

We have used the HEALPIX7 package to produce . Ina�m

Figure 1, we show the color-coded phase gradientD {�

for the FCM and WFM. The vertical axis is thef � f��1, m �, m

multipole� up to and the horizontal them-axis where� p 600
. Because of the relation , only modes from∗m ≤ � a p a�m �, �m

nonnegativem are shown. Although the phase gradient (from
neighboring modes) is the most primitive way of qualitatively
checking phase correlations, the apparent presence of stripes
shown in the FCM indicates strong coupling between modes of
neighboring� of the samem.

4. PHASE MAPPING AND THE MEANx2-STATISTIC
OF THE DERIVED MAPS

To test the Gaussianity of the FCM and the WFM based on
the random-phase hypothesis, we apply a phase-mapping tech-
nique (Chiang, Coles, & Naselsky 2002a; Chiang, Naselsky,
& Coles 2002b) to quantify the degree of “randomness” of the
phases (i.e., Gaussian). The return map of phases is a bounded
square in which all phase pairs of fixed separation (Dm, D�)
are mapped as points (see Fig. 2). For example, one single
return map for phase pairs with separation (Dm, D�) p

contains points with (x, y)-coordinate ; i.e.,(0, 1) (f , f )�, m ���, m

7 See http://www.eso.org/science/healpix.

all phase pairs from modes that are separated by . IfD� p 1
the phases are random, we expect to have an ensemble of return
maps of all possible separations, each of which should be a
scatter plot. As such, we are testing the randomness on the
most strict terms. After mapping phase pairs on to a return
map, we can apply amean x2-statistic on the return map, which
is defined as

2¯1 [p(i, j) � p]2x p , (3)�
¯M pi, j

whereM is the number of pixels on the return map and is thep̄
mean value for each pixel on the discretized return map. Chiang
et al. (2002b) have shown that for a homogeneous and isotropic
GRF, return mapping of phases results in an ensemble of return
maps, each with a Poisson distribution. The expectation value
of the from such ensembles of Poisson-distributed maps is2x

12Ax S p , (4)P 24pR

where R is the scale of smoothing from a two-dimensional
Gaussian convolution in order to probe the spatial structure.
The will have a statistical spreading around with a2 2x Ax SPP

dispersion , whereSP

12S p . (5)P 3 2p R (M/2)

Figure 3 shows the histograms of the -statistics from the2x
ensemble of the return maps of the FCM and the WFM for
four multipole bands. One of the advantages of the phase-
mapping technique is that we are able to check Gaussianity in
different multipole bands, in particular those corresponding to
foreground contamination and noise. Here we present the

-statistic at four bands centered around , 290, 400,2x � � 150
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Fig. 3.—Histograms of -statistic for the FCM (dotted gray curves) and2x
the WFM (solid dark curves) at different multipole ranges�. One of the
advantages of the phase-mapping technique is that it enables us to check non-
Gaussianity for different multipole ranges. The top horizontal axis is annotated
in terms of the theoretical dispersionSP of GRFs with origin set at the ex-
pectation value (vertical line in each panel ). The smoothing2 2 �1Ax S p (4pR )P

scale on the discretized return map is .2M p 128 R p 2

Fig. 4.—Meanx2-statistic from the FCM (top) and WFM (bottom) against
2000 realizations of GRFs, which is displayed in terms of the arithmetic mean

and the dispersionS of their distribution curves. The contours mark 68%2Ax S
(solid curve) and 95% (dotted curve) CL regions from 2000 realizations of
GRFs. Although 68% and 95% denotes 1 and 2j deviation in Gaussian
statistics, the distribution is notGaussian but ratherx2. The cross, triangle,
square, and asterisk symbols denote -statistic from multipole ranges centered2x

, 290, 400, and 500, respectively. Note that the contour region in the� � 150
bottom panel corresponds to a small section in the top panel.

and 500: (roughly the first Doppler peak),41 ! � ! 250
, , and . The solid224! � ! 350 350! � ! 450 463! � ! 550

dark and dotted gray curves are the WFM and FCM, respec-
tively. In each panel the vertical line denotes the expectation
value . The curves from the FCM are obvi-2 2 �1Ax S p (4pR )P

ously skewed and hence are manifestations of phase correla-
tions (i.e., non-Gaussian).

In Figure 4, we display the gross behavior of the distribution
curves in terms of the arithmetic mean and the dispersion2Ax S
S from the meanx2-statistic. The top panel is from the FCM
and the bottom WFM. The contours mark 68% (solid curve)
and 95% (dotted curve) CL regions from 2000 realizations of
GRFs. The symbols correspond to four multipole bands cen-
tered at , 290, 400, and 500. Note that the contour� � 150
region in the bottom panel corresponds to a small section in
the top panel. The phases of the four multipole bands from the
FCM are all strongly correlated, so they are far away from the
95% CL region. The WFM, however, shows that phases below
the first Doppler peak are random, with the other three multi-
pole bands around the edge of 68% CL region.

We see evidence of non-Gaussianity, however, in the WFM
of the following two bands centered and 500. In the� � 400
bottom two panels of Figure 3, there are points appearing at
the tails above 6SP. On the other hand, among the 2000 real-
izations that we simulate for GRFs,no mapping of phases
reaches value over 6SP, setting the probability below 0.05%2x
for a GRF to have such mapping. Phase mapping from the
separation produces value at 7.3SP for2(Dm, D�) p (0, 2) x
the multipole band centered , also at 6.5SP at� � 400

. For the band , 7.6SP appears at(Dm, D�) p (1, 2) � � 500

. These phase couplings are clear signs(Dm, D�) p (2, 2)
against the random-phase hypothesis, therefore a manifestation
of non-Gaussianity.

We plot in Figure 5 the CMB temperature map from only
two multipoles and 352 (of allm) of the FCM and� p 350
WFM. The choice of these specific multipoles of fromD� p 2
our previous calculation is to demonstrate non-Gaussian signals
that the correlated phases will produce in the map. The struc-
tures at andp in the FCM, the residual signal afterJ � 0
foreground cleaning, disappear after Wiener filtering.

5. DISCUSSIONS

In this Letter, we have tested non-Gaussianity of two maps:
the foreground-cleaned map and the Wiener-filtered map, which
are processed by TDH03 from theWMAP data. On the basis
of the random-phase hypothesis, we use a phase-mapping tech-
nique to yield a statistic that has detected considerable non-
Gaussian signals for both maps at most multipole bands. Our
phase-mapping technique is particularly useful in separating
non-Gaussian contributions from different sources when var-
ious contaminations are present at different� ranges. A multi-
pole band that is considerably non-Gaussian could have an
insignificant non-Gaussian contribution in the whole map and
still produce an overall Gaussian realization within a certain
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Fig. 5.— CMB temperature from two multipoles plus 352 of the� p 350
FCM (top) and the WFM (bottom). These two multipole modes are chosen
because of the pronounced coupling between modes of allm. TheD� p 2
structures at andp shown in the FCM disappear after Wiener filtering,J � 0
from which it is marginally Gaussian at these two multipoles.

confidence level. As the uncertainties in foreground cleaning
propagate through the data-processing pipelines to the accuracy
of the angular power spectrum, it is therefore necessary to have
effective methods in component separation. We believe that
our phase-mapping technique is a useful criterion to be incor-
porated into such methods. Our statistic based on phase map-
ping also holds great advantage when it comes to the issue of
creating many whole-sky Gaussian realizations for Gaussian
statistics. As our null hypothesis is that phases are random, we
only need to put random phases (with Gaussian instrumental
noise being automatically included) for each harmonic mode,
which is easily done without any limit on the highest harmonic
number� from any pixelization scheme. It is worth mentioning
that the upcomingPlanck mission will have higher sensitivity
and resolution; hence, every step of data processing will be
crucial in reaching such precision.

This Letter was supported by Danmarks Grundforskningsfond
through its support for the establishment of the Theoretical As-
trophysics Center. We thank Max Tegmark et al. for providing
their processed maps and making them public with openness.
We thank Peter Coles and Max Tegmark for useful discussions.
We also acknowledge the use of the HEALPIX package (Go´rski,
Hivon, & Wandelt 1999) to produce and Figure 5.a�m

REFERENCES

Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15
Bennett, C. L., et al. 2003a, ApJ, 583, 1
———. 2003b, ApJ, in press (astro-ph/0203208)
Bond, J. R., & Efstathiou, G. 1987, MNRAS, 226, 655
Chiang, L.-Y., Coles, P., & Naselsky, P. D. 2002a, MNRAS, 337, 488
Chiang, L.-Y., Naselsky, P. D., & Coles, P. 2002b, preprint (astro-ph/0208235)
Coles, P., & Chiang, L.-Y. 2000, Nature, 406, 376
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